Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Manzar Sohail,^a Kieran C. Molloy,^b Muhammad Mazhar,^a* G. Kociok-Köhn^b and M. Kaleem Khosa^a

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England

Correspondence e-mail: mazhar42pk@yahoo.com

Key indicators

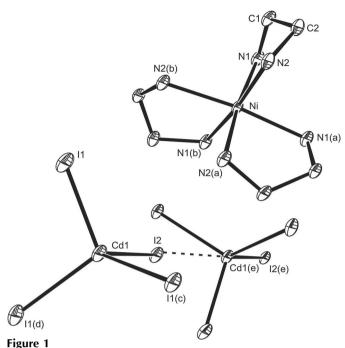
Single-crystal X-ray study T = 150 KMean $\sigma(C-C) = 0.005 \text{ Å}$ Disorder in main residue R factor = 0.018 WR factor = 0.039 Data-to-parameter ratio = 27.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(ethylenediamine)nickel(II) tetraiodo-cadmate(II)

The title compound, $[Ni(C_6H_{24}N_6)][CdI_4]$, contains two discrete ions, an $[Ni(en)_3]^{2+}$ (en = ethylenediamine) cation and a $[CdI_4]^{2-}$ anion. The Ni^{2+} ion is coordinated by three chelating ethylenediamine ligands in a distorted octahedral geometry while the Cd^{2+} ion binds four iodide ions in a slightly distorted tetrahedron. Both the Ni and Cd atoms lie on threefold axes of rotation. The structure is disordered at cadmium, with two alternative sites for the metal in a 97:3 ratio; the minor component of the disorder inverts the CdI_4 tetrahedron and reverses the direction of propagation of the aligned $[CdI_4]_n^{2-}$ units.

Received 29 November 2005 Accepted 20 January 2006


Comment

There has been considerable interest in the development of chemical routes for the deposition of nickel oxide (NiO) and complex oxides containing nickel, which have a number of important industrial applications. For instance, nickel oxide is a component of electrochromic devices such as automotive mirrors and smart windows, optical or electrical gas sensors. (Ozer & Lampert, 1998). Complex (I) (Fig. 1 and Table 1) has been synthesized in a continuation of attempts to obtain suitable precursors for the deposition of complex oxides containing nickel through aerosol-assisted chemical vapour deposition (AACVD) (Sohail et al., 2005).

$$\begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & &$$

The structure is disordered at cadmium, with two alternative sites for the metal in a 97:3 ratio; the minor component of the disorder inverts the CdI₄ tetrahedron and reverses the direction of propagation of the aligned [CdI₄]_n²⁻ units. Only the major component of the structure is shown in Fig. 1 and discussed here. Complex (I) contains discrete [Ni(en)₃]²⁺ and [CdI₄]²⁻ ions, with each of the Ni and Cd atoms lying on threefold axes of rotation. The Ni^{II} ion is coordinated by three chelating ethylenediamine ligands, resulting in distorted octahedral geometry. All axial/equatorial N—Ni—N bond angles lie in the range 82.01 (10)–93.47 (12)°, showing a significant distortion, while symmetry dictates that all *trans* N—Ni—N angles are identical [173.05 (11)°], as are all Ni—N

© 2006 International Union of Crystallography All rights reserved

The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Only the major disorder component is shown. H atoms have been omitted. [Symmetry codes: (a) -y + 1, x - y, z; (b) -x + y + 1, -x + 1, z; (c) -x + y, -x + 1, z; (d) -y + 1, x - y + 1, z; (e) -x + y, y, $z - \frac{1}{2}$.]

bonds [2.130 (3) Å], the latter being slightly longer than analogous bonds in related compounds (Colacio *et al.*, 2003). The Cd^{II} ion in the $[CdI_4]^{2-}$ anion is coordinated by four I atoms with a distorted tetrahedral geometry.

The range of relevant I—Cd1—I bond angles, 105.377 (14)— 113.237 (12)°, indicates that the geometry shows some significant deviation from regular tetrahedral, as is the case in other complexes containing [CdI₄]²⁻ (Bailey & Pennington, 1995). The Cd1-I bond lengths are comparable to those of similar compounds (Bengtsson-Kloo et al., 1996). The anions align to allow the cadmium centres to become linked to each other through bridging iodine ligands $[12 \cdot \cdot \cdot \text{Cd1}^e = 4.223 (1) \text{ Å}]$ [symmetry code: (e) -x + y, y, $z - \frac{1}{2}$]. This interaction is weak, and consistent with a lengthening of the Cd-I2 bond [2.7889 (11)] at the limit of detection in comparison with analogous bonds involving non-bridging halogens [2.7815 (15) Å]. However, a flattening of the tetrahedron, evident from the I1-Cd-I1 angle [113.237 (12)°] is evidence of a meaningful anion-anion interaction. The distortions from octahedral and tetrahedral in both of the ions of the complex (I) may result from packing effects and are observed in other such complexes (Kallel & Bats, 1981).

Experimental

Tris(ethylenediammine)nickel(II) bromide, $[Ni(en)_3]Br_2$ (3.199 g, 6.8 mmol), and potassium tetraiodocadmate(II), $K_2[CdI_4]$ (3.62 g, 6.8 mmol), were dissolved in water (30 ml), resulting in the formation of a precipitate of complex (I). This was washed several times with distilled water and recrystallized from ethylene glycol over a two-month period at room temperature.

Crystal data

$Ni(C_6H_{24}N_6)][CdI_4]$	Mo $K\alpha$ radiation
$M_r = 859.02$	Cell parameters from 15955
Frigonal, P3c1	reflections
a = 9.023 (5) Å	$\theta = 2.9 - 30.0^{\circ}$
c = 14.203 (5) Å	$\mu = 8.16 \text{ mm}^{-1}$
$V = 1001.4 (9) \text{ Å}^3$	T = 150 (2) K
Z=2	Block, colourless
$D_x = 2.849 \text{ Mg m}^{-3}$	$0.25 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	1937 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.056$
Absorption correction: multi-scan	$\theta_{\rm max} = 30.0^{\circ}$
(SORTAV; Blessing, 1995)	$h = -11 \rightarrow 12$
$T_{\min} = 0.120, T_{\max} = 0.195$	$k = -12 \rightarrow 12$
21288 measured reflections	$l = -19 \rightarrow 19$
1944 independent reflections	

Refinement

-	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0075P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.018$	+ 1.6741 <i>P</i>]
$wR(F^2) = 0.039$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.17	$(\Delta/\sigma)_{\text{max}} = 0.001$
1944 reflections	$\Delta \rho_{\text{max}} = 0.99 \text{ e Å}^{-3}$
72 parameters	$\Delta \rho_{\min} = -0.61 \text{ e Å}^{-3}$
H atoms treated by a mixture of	Absolute structure: Flack (1983),
independent and constrained	968 Friedel pairs
refinement	Flack parameter: 0.00 (3)

Table 1 Selected geometric parameters (Å, °).

Cd1-I1i	2.7815 (15)	$Cd1A-I1^{i}$	2.771 (4)
Cd1—I2	2.7889 (11)	$Cd1A - I2^{ii}$	2.879 (15)
		Ni-N2 ⁱⁱⁱ	2.130 (3)
I1 ⁱ -Cd1-I1 ^{iv}	113.237 (12)	N2 ⁱⁱⁱ -Ni-N2 ^v	92.83 (12)
$I1^{i}$ -Cd1-I2	105.377 (14)	$N2^{iii}-Ni-N1^{iii}$	82.01 (10)
$I1^{i}$ -Cd1 A - $I1^{iv}$	113.90 (2)	$N2-Ni-N1^{iii}$	173.05 (11)
$I1^{i}$ -Cd1 A - $I2^{ii}$	104.60 (3)	$N1^{iii}-Ni-N1$	93.47 (12)

Symmetry codes: (i) -x+y, -x+1, z; (ii) $-x+y, y, z-\frac{1}{2}$; (iii) -x+y+1, -x+1, z; (iv) -y+1, x-y+1, z; (v) -y+1, x-y, z.

The coordinates of H atoms attached to N atoms were found in difference maps and allowed to refine freely with fixed isotropic displacement parameters. H atoms bound to C atoms were refined using a riding model, with C—H = 0.99 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. PLATON (Spek, 2003) reveals metrical relationships among atoms consistent with a higher symmetry space group. The highly symmetric ions also suggest the higher symmetry space group $P\overline{6}c2$. However, checking the $R_{\rm int}$ values, the structure is unequivocally trigonal $(\overline{3}m1)$ or $\overline{3}$ symmetry; $R_{\rm int} < 0.057$). $R_{\rm int}$ for any hexagonal 6/m or 6/mmm symmetry (or trigonal $\overline{3}1m$) symmetry is > 0.187. Disorder in the occupation of the anions has been resolved and refined, the principal disorder component having an occupancy of 0.972 (8). Analysis of the model considering long-range hydrogen bonds between the cation and the anion favours the 97% position of the anion.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELX97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

metal-organic papers

The authors thank the Pakistan Science Foundation Islamabad 45320, Pakistan, for funding [contract/grant No. PSF/R&D/C-QU/Chem(218)].

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bailey, D. R. & Pennington, T. M. (1995). Acta Cryst. C51, 226-229.

Bengtsson-Kloo, L., Berglund, J., Stegemann, H., Svensson, C. & Svensson, H. P. (1996). *Acta Cryst.* C**52**, 3045–3047.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Colacio, E., Lloret, F., Kivekas, R., Suarez-Varela, J., Sundberg, R. M. & Uggla, R. (2003). *Inorg. Chem.* 42, 560–565.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Kallel, A. & Bats, W. J. (1981). Acta Cryst. B37, 676-677.

Nonius (2000). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Ozer, N. & Lampert, C. M. (1998). Sol. Energy Mater. Sol. Cells, 54, 147-152

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.

Sohail, M., Molloy, K. C. Mazhar, M., Kociok-Köhn, G. & Khosa, M. K. (2005). *Acta Cryst.* E**61**, m2001–m2002.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.